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1.  INTRODUCTION 

Seaweed farming has been well established in Asia 
for decades, and the industry is now expanding to 
most of the industrialized world (Duarte et al. 2022). 
In the nothern hemisphere, the sugar kelp Saccharina 
latissima, along with the winged kelp Alaria escu-
lenta, thrive naturally and are among the species 

with the highest commercial potential (Hancke et al. 
2018). Kelp farming is generally believed to have 
little environmental impact. Kelp is an autotrophic 
orga nism that relies on carbon dioxide, nutrients, and 
light to grow; it requires neither fertilizers nor feed 
during production (Stévant et al. 2017). However, one 
concern is continuous detritus production from kelp 
farms and the subsequent export of particulate or-
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 existing resilient sedimentary carbon. The absolute degradation rates of kelp were reduced in the 
absence of O2, and sulfate reduction resulted in gradual accumulation of iron sulfide. Lower 
ambient temperature reduced the benthic mineralization rate of both kelp species, particularly 
during the initial incubation stages. The current study demonstrates the importance of key 
variables for  microbial kelp degradation in marine sediments and their dynamics — variables that 
should be carefully considered when assessing environmental implications of seaweed farming.  
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ganic matter to the adajcent environment (Fieler et 
al. 2021). With an expansion of the industry, export of 
kelp detritus will lead to organic carbon deposition at 
the seafloor in potentially harmful quantities, de-
pending on the cultivation intensity (Broch et al. 
2019). The continously produced detritus originates 
from erosion of the distal ends of the blade, and kelp 
detritus in cludes a wide size range of fragments and 
intact thalli (Krumhansl & Scheibling 2012, Filbee-
Dexter et al. 2018). The quantity of particulate 
organic ex port increases with progression of the 
growth season and has been estimated to account for 
up to 60% of harvested biomass at the end of the sea-
son (Zhang et al. 2012, Fieler et al. 2021). For natural 
kelp forests, ~40−50% of annual net particulate pri-
mary production is exported as organic detritus frac-
tions (Krause-Jensen & Duarte 2016, Pedersen et al. 
2020, Pessarrodona et al. 2022). In addition to contin-
uous distal erosion, pulses of drift kelp might be re-
leased during storms, harvest, or farm malfunctioning 
and may create mass deposition events (de Bettignies 
et al. 2013). Detritus from both cultivated and natural 
kelp is transported by waves and currents into adja-
cent habitats (Filbee-Dexter et al. 2018), where it is 
de composed by benthic communities or potentially 
re tained in the sediment record (Duggins et al. 1989). 

Detritus affects and fuels benthic ecosystems. 
Microbial processes occurring at the sediment sur-
face are essential for the transformation and fate of 
deposited kelp detritus. Aerobic microorganisms oxi-
dize organic carbon to carbon dioxide (CO2) using 
oxygen (O2), but in most coastal settings, O2 only 
extends a few mm into the sediment (Glud 2008). 
Deposited kelp can therefore become buried in the 
anoxic zone of sediments via physical sediment mix-
ing or bioturbation, which affects its degradation 
dynamics and the involved remineralization path-
ways. In anoxic sediments, carbon mineralization is 
typically dominated by sulfate reduction, which pro-
duces toxic hydrogen sulfide (H2S) as an end product 
(Jørgensen et al. 1990). H2S can either be oxidized by 
O2 or entrapped in reduced iron sulfide (FeSx), 
depending on the availability of O2 and FeO2H (Jør-
gensen et al. 1990). In settings with large accumula-
tion of kelp detritus, H2S production can be exten-
sive, which can lead to the release of harmful 
H2S from the seafloor and the formation of sulfide-
oxidizing microbial communities (Jørgensen & Revs-
bech 1985, Glud et al. 2004). 

The degradation rate of kelp material is influenced 
by several environmental factors, such as temperature 
and O2 availability. Kelp is generally less de grad -
able than phytoplankton due to its content of com-

plex structural compounds and phenols  (Trevathan-
Tackett et al. 2015, Filbee-Dexter et al. preprint doi:
10.21203/rs.3.rs-38503/v1). Poly phenol content can 
vary among kelp species and has been shown to deter 
microbial attack and reduce the degradability of kelp, 
especially in anoxic settings (Kristensen et al. 1992, 
Freeman et al. 2001). Thus, temperature, O2 availabil-
ity, and seaweed species-specific carbon compounds 
are key factors to consider when evaluating the 
degradation dynamics and environmental implica-
tions of detrital deposition. 

In this study, we investigated the dynamics of 
 microbial-driven degradation of S. latissima and A. 
esculenta in marine sediments (Fig. 1a,b). We hy-
pothesized that the degradation dynamics and the 
benthic biogeochemical responses following kelp 
deposition differ for the 2 species, but that specific 
responses depend on the environmental conditions. 
Using a series of laboratory experiments, we thus 
aimed to quantify kelp degradation rates as a 
function of de posited kelp quantity, O2 availability, 
and temperature. We simulated deposition of kelp 
fragments on top of the sediment, such that they 
were exposed to oxy gen (surface amendments), as 
well as below the oxic sediment surface (subsurface 
amendments). The benthic solute exchange in the 
respective treatments was used to assess microbial 
mediated degradation, re dox dynamics, and carbon 
sequestration in marine sediments following kelp 
deposition and to discuss the implications for sustain-
able kelp farming practices. 

2.  MATERIALS AND METHODS 

2.1.  Sample collection 

Oslo fjord, Norway is divided into 2 major areas: 
the inner and outer fjord, which are separated by the 
12.0 km long narrow and shallow (19.5 m) Drøbak sill 
(Staalstrom et al. 2012). Sediment samples were col-
lected close to Drøbak sill just outside the Norwegian 
Institute for Water Research (NIVA) research station 
at Solberg strand, Norway (59° 36” 57’ N, 10° 39” 10’ E), 
on 21−24 May 2019. The temperature at 12 m water 
depth ranges seasonally from 8 to 15°C (Berge et al. 
2015).  

Fresh kelp was provided by a Norwegian kelp 
farm in Trondheim, Norway (Seaweed Energy Solu-
tions; https://seaweedsolutions.com). A total of 2.6 kg 
of kelp fronds were collected and frozen on May 20, 
2019 and transported in frozen cool packs to the  
laboratory. 
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2.2.  Sediment sampling 

Sediment was collected by SCUBA divers at 12 m 
water depth using 5.2 cm internal diameter acrylic 
core liners. Core liners were gently inserted ~15 cm 
into the sediment, and intact cores were placed into a 
small crate and carried to the surface (Mogg et al. 
2017). During their transportation back to the labora-
tory in Denmark, sediment cores were kept in racks 
at ambient temperature (15−20°C) and sealed with 
rubber stoppers. The cores were then placed in an 
aquarium room (15°C), and the sediment was initially 
exposed to anoxia for 10 d. This drove most of the 
fauna to migrate to the sediment surface, where they 

were removed using tweezers. Defaunation was re -
quired to explore the microbial-driven mineraliza-
tion of added kelp in relatively similar sediment 
matrices. Following initial defaunation, cores were 
transferred to a large aquarium with aerated bottom 
water collected at the study site in the Oslo fjord 
(salinity 31.0 ± 1.0). Water height in the sediment 
cores was adjusted to ~5.0 cm. Prior to the experi-
ments, sediment cores were uncapped and left to ac -
climatize for 60 d while submerged in sampled sea -
water at ~15°C. Small magnetic stirrers were fixed 
inside the cores. The stirring assured mixing of the 
water column above the sediment. During this initial 
acclimatization period, any remaining dead fauna 
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Fig. 1. The 2 species of cultured kelp investigated in the current study  (a) Alaria esculenta and (b) Saccharina latissima. 
(c) Set of sediment cores with kelp amendments; rotating stirring bars were removed to show sediment surface and amend-
ments. (d) Typical dataset of linearly declining O2 concentration and the corresponding start and end value of dissolved  

inorganic carbon (DIC) in a 3 h long incubation
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decomposed, and the total oxygen uptake (TOU, see 
Sections 3.3 and 3.4) was monitored to ensure that a 
reduced and stable TOU was reached before pro-
ceeding with experiments. 

2.3.  Quantification of carbon mineralization  
in sediment cores 

Benthic carbon mineralization can be approximated 
by measuring the TOU of sediments, under the as-
sumption that the system is in steady state re garding 
production and oxidation of reduced substances from 
anaerobic respiration (Glud 2008). However, during 
times with high carbon load, O2 availability decreases, 
and the reoxidation of reduced substances is delayed, 
creating a pool of reduced iron sulfides that will be 
oxidized once O2 availability increases (Glud et al. 
2003). As a result, the O2 up take rate typically under-
estimates the total C-mineralization rate during peri-
ods with high organic sediment loading and concur-
rently over estimates C-mineralization during periods 
with less organic loading (Therkildsen & Lomstein 
1993). The benthic release of dissolved inorganic car-
bon (DIC) is a more direct measure of the instanta-
neous C-remineralization rate since CO2 is the end 
product of both aerobic and anaerobic respiration and 
can be measured alongside O2 uptake (Anderson et 
al. 1986). Here, we quantify both the exchange rate of 
O2 and DIC, which enables direct conversion of the 
measured flux rates to the concurrent benthic min -
eralization of organic material in the sediment 
(Fig. 1c,d). The calculated DIC:O2 exchange ratio, 
also termed the respiratory quotient (RQ), provides an 
indication for the redox conditions at which the or-
ganic material is mineralized. 

All sediment core incubations were initiated by 
sealing the cores with a gas-tight cap, leaving a 
known water volume above the sediment (~5.0 cm 
water height). Oxygen (% air saturation) was meas-
ured non-invasively using a fiber-optic system (Fire -
sting, Pyroscience) following an O2-sensitive sensor 
readout spot that was fixed to the underside of the lid 
and which was in contact with the water during incu-
bation (Camillini et al. 2021). During incubation, the 
O2 concentration decreased by about 20% of the ini-
tial value, ensuring a distinct linear decline with time 
(Glud 2008) (Fig. 1d). The individual incubation time 
ranged from 1 to 8 h, depending on the treatment and 
conditions. The % air saturation was converted to O2 
concentration (μmol l−1), based on the O2 solubility at 
the applied temperature and salinity (Garcia & Gor-
don 1992). Temperature and salinity were monitored 

on a regular basis throughout the experiments and 
varied by less than 1°C and 1, respectively. 

Samples for DIC determinations were extracted 
from the overlying water at the start and end of each 
sediment core incubation; 12 ml of water was sampled 
by a glass syringe, transferred to a gas-tight exetainer, 
and preserved using 50.0 μl of saturated HgCl2. The 
water samples were then stored at 15°C in the dark 
until further analysis by a flow injection analyzer 
(Hall & Aller 1992). Triplicates of 2 mM NaHCO2 stan-
dards were measured every 6 samples to correct for 
potential drift in the signal. The mean ± SD of 5 sets of 
triplicates of 2 mM NaHCO2 was 2000 ± 4 μM. Benthic 
fluxes of O2 and DIC (mmol m−2 d−1) were calculated 
from the slope of the concentration (C, μmol l−1) 
change over time (t, h) (dC/dt), accounting for the vol-
ume of the enclosed water (V, in m3) and the sediment 
area of the cores (A, in m2), that is, flux = V/A ⋅ dC/dt. 

2.4.  Density and organic content of sampled 
sediment and kelp 

Three sediment cores were sliced into 9 sections 
with 0.5 cm depth resolution between 0.0 and 3.0 cm 
and 1.0 cm depth resolution between 3.0 and 6.0 cm 
depth. For each sediment section, sediment density 
D (g cm−3), water content (%), and weight loss on igni-
tion (LOI,%) were quantified. D was calculated from 
weight (W, g) and volume (V, cm3) of wet sediment as 
D = W/V. Water content both for sediment and kelp 
was calculated as weight loss after drying overnight 
at 105°C (sediment) and 60°C (kelp) based on the fol-
lowing equation: wet weight (WW) − dry weight 
(DW) /WW × 100. LOI was calculated after combust-
ing the sediment at 520°C for 6 h (Dean 1974). Carbon 
and nitrogen content were measured on subsamples 
of 25.0 mg dried sediment that were transferred into 
tin capsules for analysis on an elemental analyzer 
coupled to an isotope ratio mass spectrometer (Delta 
V Advantage IRMS with Thermo Scientific EA). 
Water content, LOI and the C:N ratio of kelp material 
were determined using procedures similar to those for 
the sediment. Indicated error margins represent SD. 

2.5.  Experimental setup 

2.5.1.  Degradation rates of frozen versus  
fresh kelp material 

Since fresh kelp material of similar quality was not 
available during the entire experimental period, we 
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decided to use one large batch of frozen kelp mate-
rial. However, first we tested the potential effect of 
frozen kelp fronds on the particulate and dissolved 
organic matter degradation dynamics through a 
series of degradation experiments in water. Kelp 
fragments were incubated under dark conditions in 
100 ml gas-tight bottles filled with water from the 
sampling site. The decrease in O2 over time was 
monitored similar to procedures for the core incuba-
tions. Incubations were performed in triplicates con-
taining either fresh Saccharina latissima, frozen S. 
latissima, fresh  Alaria esculenta, frozen A. esculenta, 
or no kelp (control). Triplicates of 0.8 g WW of each 
species (1.0 × 1.0 cm pieces) were added to glass bot-
tles containing water (salinity: 31.0 ± 1, temperature 
15°C). Glass bottles were fastened onto a rotating 
plankton wheel, and incubations were conducted 15 
times during a 30 d period, with incubation times 
varying from 1 to 6 h. New glass bottles were used for 
each incubation to avoid buildup of biofilm on the 
inside wall of the bottles. After each experiment was 
terminated, the kelp material was removed and the 
glass bottles left with gentle air bubbling until the 
following day to ensure 100% air saturation in the 
water. The next morning, water was subsampled to 
determine the O2 consumption related to degrada-
tion of dissolved organic carbon (DOC) that had 
leaked from the kelp during the experiments. Sub-
samples were incubated in 12 ml exetainers 
equipped with an O2 sensitive sensor spot under the 
same conditions as for the kelp. This experimental 
design allowed us to concurrently monitor the degra-
dation kinetics of both frozen and fresh kelp frag-
ments, as well as the O2 consumption associated with 
the release of DOC from frozen and fresh kelp. The 
O2 consumption associated with the release of DOC 
was minor when compared to the total O2 consump-
tion, and freezing did not appear to have a significant 
im pact on the O2 consumption rates of the 2 targeted 
species (Fig. A1 in the Appendix). It was concluded 
that the difference between fresh and frozen mate-
rial was of minor importance when assessing the 
benthic degradation dynamics of the 2 kelp species. 

2.5.2.  Surface amendments — effect of increasing 
carbon load 

To explore the degradation rate of kelp as a func-
tion of increasing kelp amendments, 19 defaunated 
sediment cores were submerged in water from the 
sediment sampling site and kept at 15°C. For each of 
the 2 kelp species, 8 cores were amended with: 0.3, 

0.5, 0.8, 1.3, 1.5, 1.7, 1.9 and 2.0 g of kelp material 
(WW). Treatments were not replicated. Three cores 
were kept unamended as controls. The kelp material 
consisted of 1.0 × 1.0 cm fragments, and when placed 
on the sediment surface, the material was kept in 
place and in contact with the sediment surface using 
a small mesh. The range of doses and the size of kelp 
were chosen to mimic typical values for natural set-
tings (Filbee-Dexter et al. 2018, Wernberg & Filbee-
Dexter 2018, Fieler et al. 2021); see Section 4. The 
degradation of kelp was inferred from the benthic 
exchange rates of O2 and DIC quantified from 19 
individual incubations performed over a 65 d period. 

2.5.3.  Subsurface amendments — effects of  
O2 availability 

The O2 penetration depth (OPD) in the unamended 
sediment was quantified by microsensor profiling 
(Revsbech 1989) and was on average (±SD) 0.46 cm 
± 0.02 (n = 10). Thus, to test the effect of O2 availabil-
ity on the degradation dynamics, kelp pieces were 
buried >0.5 cm below the sediment surface. This was 
done by carefully extruding the upper 0.5 cm of the 
sediment, removing this layer, placing the kelp 
pieces on the anoxic layer, and then replacing the 
surface sediment slice. The sediment core was then 
drawn downwards to 5 cm below the top of the plas-
tic liner and submerged in water from the sediment 
collection site. This approach was preferred over 
anoxic incubations in order to maintain realistic envi-
ronmental conditions after a subsurface deposition 
mediated by fauna or resuspension events. 

The sediment cores were exposed to 5 sets of 
organic enrichments: 1.0 g WW S. latissima, 2.0 g 
WW S latissima, 1.0 g WW A. esculenta, 2.0 g WW A. 
esculenta, as well as 3 unamended control cores — all 
5 treatments were made in triplicates. The incuba-
tion setup was identical to that used in the dose-
response experiment described in Section 2.5.2. For 
the subsurface amendments, 11 individual incuba-
tions of each of the 15 sediment cores were con-
ducted within a 41 d period. 

2.5.4.  Surface amendments — effects of temperature 

The effect of temperature on kelp degradation was 
investigated by in cubating sediment with kelp 
amend ments at the sediment surface at 2 different 
temperatures (8 and 15°C). As above, the experi-
ments were conducted in thermoregulated rooms. 
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At both temperatures, 3 treatments were applied in 
triplicates (9 cores): amendment with 1.3 g WW of S. 
latissima, amendment with 1.3 g WW of A. esculenta, 
and finally 3 controls without any kelp addition. 
Degradation  dynamics were assessed by 16 individ-
ual incubations of the 9 sediment cores during a 68 d 
long period. 

2.5.5.  Determining decay rate constants and 
applied statistics 

To quantify decay constants (k, d−1) for organic car-
bon being overturned in the respective treatments, 
an exponential equation, y = b (1 – e –kt), was fitted to 
the cumulated O2 uptake. Non-linear curve-fitting 
was performed in OriginPro 2022 using a Levenberg-
Marquardt iteration algorithm, and the SE of the fit-
ting parameters was scaled with the square root of 
the reduced chi-squared statistic. 

Statistical analyses were performed to compare de -
cay rates and percent carbon turnover between 
treatments. A Shapiro-Wilk normality test was used 
to evaluate whether data were significantly drawn 
from a normally distributed population. Two-sample 
t-tests established whether the difference between 
means were significantly different from zero at the 
0.05 level. If equal variance could not be assumed, a 
Welch correction was applied. Statistical tests were 
performed in OriginPro 2022 (OriginLabs). 

3.  RESULTS 

3.1.  Algae and sediment characteristics 

The carbon and nitrogen content were slightly 
higher — while the water content and the C:N ratio 
was slightly lower — for Alaria esculenta than for 
Saccharina latissima (Table 1), similar to previously 
published values (Schiener et al. 2015, Forbord et al. 
2020). The upper 6 cm of sediment showed no dis-
tinct vertical gradients in porosity, LOI, and C:N 

ratios (Table 1). These values are typical of cohesive 
coastal sediments (Valdemarsen et al. 2014, Röhr et 
al. 2016, Politi et al. 2019). 

3.2.  Effects of increasing organic enrichment on 
benthic O2 and DIC exchange 

For all incubations with surface amendments, the 
rate of cumulative O2 uptake gradually declined over 
time, and for both kelp species, the cumulative O2 
uptake increased as a function of increasing amount 
of amended kelp material (e.g. Fig. 2a,b). For surface 
amendments, cumulated O2 consumption in the low-
est to highest amount of kelp amendment at Day 65 
ranged from 1170 to 3456 mmol O2 m−2 for S. latis-
sima and from 1325 to 3832 mmol O2 m−2 for A. escu-
lenta. The derived decay rate constants remained 
independent of the amount of organic enrichment 
and ranged from 0.020 to 0.051 d−1 for S. latissima 
(mean ± 1SD = 0.031 ± 0.010 d−1) and from 0.011 to 
0.020 d−1 for A. esculenta (mean ±1 SD = 0.017 ± 
0.003 d−1) (Table 2). The mean decay rate for S. latis-
sima was significantly higher than A. esculenta for 
the 15°C treatment (t = 3.800, df = 8.399, Pr > |t | = 
0.005) (Table 2). 

The DIC release rate quantified for 3 kelp amend-
ments of each species (0.0, 1.3, 2.0 g WW) exhibited 
similar dynamics as the O2 consumption rate. The cu-
mulative DIC release at Day 65 ranged from 2804 to 
4670 mmol DIC m−2 for S. latissima (Fig. 2d) and from 
3158 to 4629 mmol DIC m−2 for A. esculenta (Fig. 2c). 

The DIC:O2 exchange ratio as derived from the indi-
vidual incubations showed substantial variation but no 
clear temporal development. The mean DIC:O2 ex-
change ratio of all incubations with surface kelp 
amendments amounted to 1.3 (S. latissima: 1.3 ± 0.4 
and A. esculenta: 1.2 ± 0.4), while values for the con-
trols amounted to 1.5 ± 0.7 (Fig. 2e,f). The large varia-
tions among the respective treatments as well as the 
controls indicated a relatively large core-to-core varia-
tion, confounding any potential minor trend or differ-
ence across treatments. 

The total carbon turnover after 65 d 
increased linearly with in creasing 
organic enrichment for both species, 
and the response exhibited no sign of 
substrate saturation, which would 
likely manifest as an asymptote in 
the dose-response relationship of 
Fig. 3. The smaller range in organic 
enrichment as ex pressed in carbon 
equivalents for S. latissima re flects 
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                                          Water          C:N         Density    Porosity        LOI  
                                     content (%)                     (g cm−3)                         (%) 
 
Saccharina latissima        89 ± 2      15.0 ± 2.7                                              
Alaria esculenta               85 ± 2      12.3 ± 1.3                                              
Sediment                                          18.3 ± 2.7    1.8 ± 0.1   0.5 ± 0.1   3.1 ± 1.4

Table 1. Water content and C:N of the amended kelp fragments along with sed-
iment (0−6 cm) C:N, density, porosity, and loss on ignition (LOI). Values are  

mean ±1 SD (n = 11 for kelp samples and n = 27 for sediment samples)
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the higher water content and lower carbon content 
(%) as compared to A. esculenta (Table 1). 

3.3.  Effect of subsurface amendments on benthic 
O2 and DIC fluxes 

In the subsurface amendment experiments, cumu-
lated O2 consumption also increased with increas-
ing organic enrichment from 433 to 617 mmol m−2 

for S. latissima and from 390 to 500 mmol m−2 for A. 
esculenta (after 41 d, Fig. 4a,b). The cumulated 
DIC re lease followed the same pattern, but with an 
elevated response compared to the cumulated O2 
up take (Fig. 4c,d). The values ranged from 643 to 
964 mmol m−2 for S. latissima and from 453 to 
744 mmol m−2 for A. esculenta for the 2 respective 
amendments, while the DIC:O2 exchange ratio in 
the control incubations re mained at 1.3 ± 0.6 and 
re mained similar to the DIC:O2 exchange ratio of 

7

Fig. 2. (a,b) Cumulated O2 consumption, (c,d) dissolved inorganic carbon (DIC) release, and (e,f) the resulting DIC:O2 ratio for 
the exchange rates measured during incubations of sediment cores amended with different doses of kelp material at the sedi-
ment surface from the 2 targeted species (Alaria esculenta and Saccharina latissima) at 15°C. Incubations with kelp amend-
ments made without replications; control incubations without kelp amendment made in triplicate. Error bars (mean ±1 SD)  

presented where relevant. WW: wet weight
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the control incubations of the previous incubations 
experiments. The subsurface kelp amendments 
thus resulted in elevated DIC:O2 exchange ratios of 
2.4 ± 0.7 for both kelp species (Fig. 4e,f). This sug-
gests that O2 was not supplied sufficiently fast to 
oxidize reduced products from anaerobic degrada-
tion (H2S and FeSx) which accumulated as an O2 
debt in the sediment during all incubations with 
sub surface amendments. The total amount of orga -
nic material overturned after 41 d (the extent of 
the incubations with subsurface amendments) as 
assessed by cumulative DIC release was 65 ± 11% 
(mean ±1 SD, n = 4) for S. latissima and 22 ± 7% 
(mean ±1 SD, n = 4) for A. esculenta, with means 
being significantly different (t = 6.781, df = 6, Pr > 
|t | = 0.000). 

3.4.  Effect of temperature on benthic O2 fluxes 

The cumulated O2 consumption of 1.3 g WW kelp 
deposited at the sediment surface at 8 and 15°C are il-
lustrated in Fig. 5. The cumulative O2 consumption in 
the 15°C experiment increased rapidly from the first 
day, but rates gradually declined until the end of the 
experiment where the incubations with S. latissima 
and A. esculenta reached 1497 and 1640 mmol m−2, 
respectively. 

In contrast, the cumulative O2 consumption in the 
8°C experiment exhibited a lag phase until Day 11. By 
the last day of the experiment, the cumulative values 
of S. latissima and A. esculenta had only reached 484 
and 788 mmol m−2, respectively, and the derived de-
cay rate constants (k) at the lower temperature were 
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Fig. 3. Cumulated O2 consumption and dissolved inorganic carbon (DIC) release after 65 d of incubations as a function of kelp  
amendments for (a) Alaria esculenta and (b) Saccharina latissima. Data fitted with a linear regression

                                   Organic dose           S. latissima                  A. esculenta                 S. latissima                A. esculenta  
                                        (g WW)                    (k, d−1)                           (k, d−1)                   (% C turnover)           (% C turnover) 
 
15°C surface                       0.3                          0.051                              0.019                              128                               55 
                                            0.5                          0.035                              0.019                              276                               49 
                                            0.8                          0.030                              0.018                              171                               49 
                                            1.3                          0.025                              0.019                              112                               50 
                                            1.5                          0.020                              0.015                              124                               49 
                                            1.7                          0.034                              0.011                              117                               40 
                                            1.9                          0.025                              0.015                              106                               47 
                                            2.0                          0.025                              0.020                              133                               70 
Mean ±1 SD                                               0.031 ± 0.010                 0.017 ± 0.003                   146 ± 56                        51 ± 9 

15°C subsurface                 1.0                   0.041 ± 0.007                 0.018 ± 0.010                    70 ± 17                       22 ± 10 
                                            2.0                   0.034 ± 0.009                 0.012 ± 0.009                     61 ± 3                          21 ± 7 
Mean ±1 SD                                               0.038 ± 0.013                 0.015 ± 0.010                    66 ± 10                        22 ± 8 

8°C surface                         1.3                   0.005 ± 0.000                 0.002 ± 0.001                    46 ± 20                        29 ± 6

Table 2. Decay rate constants (k, d−1) for the surface and subsurface amended experiments along with the % C turnover of 
amended material after 41 d of incubation. Global means are compared statistically among species. In all treatments, mean 
decay rate constants and % C turnover rates in Saccharina latissima were significantly larger than corresponding values for  

Alaria esculenta. Where relevant, values are reported  as mean ±1 SD. WW: wet weight
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reduced by a factor of ~8 (Table 2). Higher tempera-
ture resulted in significantly more C being turned 
over for both S. latissima (t = 4.597, df = 9, Pr > |t | = 
0.022) and A. esculenta (t = 3.616, df = 8.996, Pr > |t | = 
0.006) (Table 2). Unfortunately, we did not make con-
current measurements of the DIC exchange rates in 
the temperature experiments. 

3.5.  Mass balance and species’ differences 

To assess the relative amount of kelp material that 
had been mineralized in the respective treatments, 

we compiled values after 41 d for all incubation, 
which was the duration of the shortest experiment, 
subtracted the mean control, and scaled the values to 
the absolute amount of kelp that had been added 
(Table 2, Fig. 6). For the surface amendments, we 
converted the measured O2 fluxes to carbon equiva-
lents using the measured DIC:O2 exchange ratios 
from the respective incubations, while values for the 
subsurface amendments were based on the directly 
measured DIC exchange rates. The amount of S. 
latissima material that had been mineralized ranged 
from 46 to 276% across all experiments, while the 
range for A. esculenta material that had been miner-

9

Fig. 4. (a,b) Cumulated O2 consumption, (c,d) dissolved inorganic carbon (DIC) release and (e,f) resulting DIC:O2 ratio for the ex-
change rates measured during triplicate incubations of sediment cores with subsurface amendments of different doses of kelp 
material from the 2 targeted species (Alaria esculenta and Saccharina latissima) at 15°C. Error bars (mean ±1 SD) presented  

where relevant. WW: wet weight
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alized ranged from 21 to 70%. The mean % C turn-
over for S. latissima treatments under oxic conditions 
was significantly higher than A. esculenta at 15°C (t = 
4.734, df = 7.328, Pr > |t | = 0.002) and at 8°C (t = 3.244, 
df = 4, Pr > |t | = 0.032) (Table 2). The relative amount 

of kelp degraded during the surface amendments 
expressed considerably more variation than the sub-
surface amendments (Table 2, Fig. 6). 

4.  DISCUSSION 

4.1.  Benthic mineralization and lability  
of kelp detritus 

All incubations with kelp amendments exhibited a 
relatively high initial mineralization rate that gradu-
ally decreased over the course of the incubations. 
This presumably reflects a gradual decline in the 
amount and lability of the added kelp during the 
long-term incubation periods. The mineralization 
rate increased linearly with the amount of organic 
en richment, and the derived decay rate constants 
appeared to be independent of the enrichment. How-
ever, the derived k-values for the 2 kelp species doc-
umented contrasting degradation dynamics, with k-
values for Saccharina latissima being up to 3-fold 
higher than those for Alaria esculenta (Table 2). This, 
in combination with the observation that a larger 
proportion of S. latissima was turned over relative to 
A. esculenta over the same period, suggests that 
S. latissima is overall more degradable, reflecting a 
higher lability of this species’ biomass. A. esculenta 
has been reported to contain more than twice the 
amount of polyphenols than S. latissima (Schiener et 
al. 2015, Roleda et al. 2019). Polyphenols are known 
to deter herbivory and microbial colonization and 
therefore may prolong the degradation period of 
phenol enriched detritus (Nagayama et al. 2002, 
Goecke et al. 2010). Thus, in addition to the C:N 
ratio, the content of structurally complex organics 
probably defines the lability of these 2 species, and 
macroalgae species in general. Reduced benthic O2 
depletion associated with microbial degradation of 
more refractory deposits from A. esculenta may thus 
be less severe and have less environmental impacts 
than the degradation of similar deposits by labile S. 
latissima. Inspection of the sediment at the end of the 
experimental period confirmed that while fragments 
of A. esculenta still were visible and relatively intact, 
fragments of S. latissima were completely disinte-
grated and apparently more efficiently degraded. A. 
esculenta would therefore be expected to persist 
over longer periods of time. 

The derived k-values in our study generally align 
with previously published data, but available values 
generally show large variability (Table 3). However, 
they are lower than those recently reported on 
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Fig. 6. Relative proportion of organic carbon mineralized 41 d 
(the shortest incubation period applied) after kelp amend-
ments (Alaria esculenta and Saccharina latissima) at the re-
spective environmental conditions. Values are corrected for 
control incubations without amendments; oxic versus anoxic 
conditions refer to whether kelp was amended at the sedi-
ment surface (oxic) or below the oxic surface layer (see Sec-
tions 2.5.2 and 2.5.3 for details). Error bars for the ‘anoxic’ in-
cubations represent SD of triplicate incubations. Horizontal 
dashed line indicates 100% of the amended kelp has been 
overturned. Conversion between O2 consumption and carbon 
mineralization are based on the measured respiratory quo-
tient (see Sections 3.2 and 3.3  for details). WW: wet weight
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Fig. 5. Cumulated O2 consumption over the 70 d long incuba-
tions with kelp from the 2 targeted species (Alaria esculenta 
and Saccharina latissima) amended to the surface sediments  

at 8 and 15°C. Error bars indicate ±1SD
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degradation dynamics of Laminaria hyperborea ex -
posed to similar environmental conditions (Pedersen 
et al. 2021). Here, the authors report a decay rate 
constant of up to 0.183 d−1 during the first week, fol-
lowed by a 10-fold decrease in oxic conditions at 
10°C, which is 2- to 3-fold higher than the average 
decay rate constants for S. latissima obtained in our 
study (Tables 2 & 3). These differences might partly 
reflect the different species investigated as well as 
differences in methodology. Pedersen et al. (2021) 
de rived the decay from the mass loss of particulate 
kelp detritus fragments, while in our study we uti-
lized O2 and DIC fluxes for the entire benthic com-
partment with the kelp detritus being embedded in 
intact benthic sediments. This latter methodological 
approach better represents in situ seafloor conditions 
but may stimulate microbial colonization in the sedi-
ment. Thus, the decay rate constants will additionally 
include remineralization of dissolved organic matter 
and other preexisting sedimentary carbon pools. The 
lower decay rates found in our study are consistent 
with the decay of more refractory carbon pools in the 
sediment (Tables 2 & 3). When comparing the decay 
rate constants obtained in our study to the spectrum 
of organic matter found in marine settings under sim-
ilar environmental conditions, the decay rate con-
stants are comparable to those of other common 
brown macroalgae such as Fucus serratus, Halidrys 
siliquosa, Chondrus crispus, and Sargassum muti -
cum, whereas decay rates of mussel biodeposits are 
around 10-fold larger (Table 3). The deposits from 
fish farms include both feed and fecal pellet with ini-
tial faster decay due to the high lability of feed and 

the pre-colonization of gut bacteria from the fish in 
fecal pellets (Piedecausa et al. 2012). In contrast to 
kelp amendments, carbon mineralization below fish 
farms appears to be saturated with substrates due to 
high loading, stimulating sediment sulfide emission 
and large reduction in macrofauna abundance 
(Holmer & Kristensen 1992, Holmer et al. 2003). 

4.2.  Benthic carbon mineralization and  
microbial priming 

Generally, 50% of the surface amended A. escu-
lenta was mineralized after 41 d. However, surpris-
ingly, the organic material mineralized in 7 out of 8 
surface amendments with S. latissima at 15°C ex -
ceeded the amount of added kelp (Table 2, Fig. 6). 
We argue that this additional turn-over of organic 
material is related to stimulated degradation of pre-
existing organic material in the sediment. The se -
quential microbial degradation of organic material is 
initiated by extracellular enzymes, which also can 
hydrolyze accumulated resilient organic material in 
the sediment, a phenomenon known as microbial 
priming (Arndt et al. 2013). This is particularly rele-
vant after enrichment with highly labile organic 
material (Guenet et al. 2010, Bengtsson et al. 2018) 
and thus presumably more prevalent in the amend-
ments with S. latissima. The mean organic matter 
content of the ambient sediment amounted to ~3% 
DW and could well balance the additional mineral-
ization rate that were encountered. Therefore, addi-
tional benthic O2 consumption due to potential 
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Decay rate constant       Temp.     Applied procedure                    Organic material              Reference 
(k, d−1)                                (°C)         
 
0.018                                   15         Surface amendment                  Fucus serratus                  Kristensen & Mikkelsen (2003) 
0.01                                     15         Subsurface amendment            F. serratus                         Kristensen & Mikkelsen (2003) 
0.054                                   16         Surface amendment                  Chondrus crispus             Kristensen et al. (1992) 
0.038 ± 0.022                      10         Litterbags in tanks, hypoxic      Laminaria hyperborea     Pedersen et al. (2021) 
0.009 ± 0.005                      10         Litterbags in tanks, oxic            L. hyperborea                   Pedersen et al. (2021) 
0.019 ± 0.011                      15         Litterbags in tanks, hypoxic      Sargassum muticum        Pedersen et al. (2005) 
0.016 ± 0.002                      15         Litterbags in tanks, hypoxic      Halidrys siliquosa            Pedersen et al. (2005) 
0.160                                   20         Surface amendment                  Mussel deposits               Giles & Pilditch (2006) 
0.031 ± 0.010                      15         Surface amendment                  Saccharina latissima        Present study 
0.017 ± 0.003                      15         Surface amendment                  Alaria esculenta               Present study 
0.005 ± 0.000                       8          Surface amendment                  S. latissima                       Present study 
0.002 ± 0.001                       8          Surface amendment                  A. esculenta                      Present study 
0.038 ± 0.013                      15         Subsurface amendment            S. latissima                       Present study 
0.015 ± 0.010                      15         Subsurface amendment            A. esculenta                      Present study

Table 3. Decay rate constants for different additions of organic material determined under a range of laboratory conditions 
and methodological approaches. Decay rates by Pedersen et al. (2005) and Pedersen et al. (2021) mean ±1 SE (n = 3) whereas  

the remaining rates are mean ±1 SD
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microbial priming likely has important implications 
for C burial and sequestration in the coastal zone and 
should be considered when assessing environmental 
impacts of highly labile kelp deposits. 

4.3.  Aerobic versus anaerobic degradation  
of kelp material 

The overturn of organic material as assessed from 
the O2 and DIC exchange rates were markedly 
higher in incubations with surface amendments. This 
presumably reflect the higher efficiency of aerobic 
versus anaerobic respiration (e.g. Kristensen et al. 
1995). In most studies, the assessment of benthic car-
bon mineralization is derived from the benthic O2 
consumption rate, and the RQ used for converting O2 
consumption to equivalents of carbon mineralization 
varies extensively in the literature. For aerobic respi-
ration of pelagic phytodetrital material RQ is gener-
ally considered to be in the range of 0.67−0.78 (Tani -
oka & Matsumoto 2020), while assessments for 
macro algae are in the range of 0.6−1.2 (Carvalho & 
Eyre 2011). However, the DIC:O2 exchange associ-
ated with benthic mineralization might differ consid-
erably from this range, depending on the types of de-
trital material under going mineralization, potential 
carbonate dissolution/precipitation dynamics, O2 con-
sumption via  nitrification and the redox dynamics of 
benthic iron sulfide pools (e.g. Jørgensen et al. 2022). 
Exchange rates of DIC:O2 in coastal or shelf sedi -
ments are typically in the range of 1.0−1.3 (Boucher 
et al. 1994, Stahl et al. 2004, Glud et al. 2016). This 
range scales well with values encountered for surface 
amendment of the current study, which on average 
amounted to 1.3 ± 0.4 for S. latissima and 1.2 ± 0.4 for 
A. esculenta, giving confidence in our procedure for 
converting O2 exchange rates to kelp mineralization 
rates during surface amendments. 

In the subsurface amendments, the DIC:O2 ex -
change for both kelp species increased to an average 
of 2.4 ± 0.7. This implies that DIC from anaerobic 
mineralization following organic enrichment was 
produced faster than O2 was supplied. Reduced pro -
ducts from the anaerobic degradation therefore 
accumulated in the sediment. Based on the distinct 
smell of sulfide and the darkening of the sediment 
from light grey to black, which is indicative of FeS, 
we conclude that sulfate reduction contributed sig-
nificantly to anaerobic degradation. Sulfide is highly 
toxic to higher fauna; hence, stimulated sulfate re -
duction following subsurface deposition of kelp con-
stitutes an important environmental risk. The nega-

tive impacts of organic enrichment can be alleviated 
by sulfide oxidation if the seabed is well oxygenated 
or has high content of iron oxides that can bind the 
free sulfide as iron sulfides (Jørgensen et al. 1990). 
Therefore, it will be relevant to quantify and monitor 
the level of oxidized iron in areas of kelp farming. In 
natural settings, bioturbation is important for effi-
cient re-oxidization of reduced product from anaero-
bic mineralization, and the unusually high DIC:O2 
encountered in our study might partly reflect the ini-
tial defaunation of our sediment cores. To fully 
explore the linkage between degradation of kelp 
de posits, H2S and FeSx dynamics, natural benthic 
in fauna communities must be included, but this rep-
resents a major experimental challenge and would 
probably require large-scale mesocosm studies placed 
directly in the environment. 

4.4.  Temperature 

Short-term and seasonal variations in temperature 
are important factors regulating microbial respiration 
and the efficiency of carbon degradation in costal set-
tings (Grant 1986, Thamdrup et al. 1998, Hancke & 
Glud 2004). Reducing the ambient temperature from 
the in situ value of 15 to 8°C extended the period 
where surface amended kelp detritus re mained visu-
ally intact and markedly reduced the initial decompo-
sition rate. Even though the mineralization rate at low 
temperature, after an initial lag period, gradually ap-
proached the values observed at the higher tempera-
ture, only 45.6% ± 19.9 of S. latissima and 28.7% ± 
5.9 of A. esculenta additions were mineralized after 
65 d. The corresponding values at 15°C were 112.3 
and 50.3%. Similarly, the derived decay rate constant 
at 8°C was ~8 times lower than the values at 15°C 
(Table 2). Short-term lowering of the temperature 
thus reduced the mineralization intensity and the O2 
demand of the sediment. The current study only re-
flects conditions following a temporary reduction in 
temperature as induced by hydrodynamic-driven 
changes of water masses. Longer-term or seasonal 
changes in temperature will induce a change in the 
microbial community structure, favoring better tem-
perature-acclimated and adapted microbial commu-
nities (Sage mann et al. 1998, Thamdrup et al. 1998, 
Hancke & Glud 2004, Robador et al. 2016). Several 
studies have documented that substrate availability is 
more important than temperature and that turnover 
or preservation of organic carbon in permanently 
cold regions are similar to values encountered in 
warmer regions exposed to similar deposition rates 
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(Meyer-Reil & Koster 1992, Nedwell et al. 1993, 
Arnosti et al. 1998). However, the current study de -
monstrates that short-term reductions in temperature 
will make benthic communities more resilient to the 
potential detrimental effects of kelp mineralization —
an effect that might be enhanced also by the in -
creased O2 solubility at lower temperatures. 

4.5.  Perspectives and recommendations 

We have applied a standardized microcosm proce-
dure to assess microbial degradation dynamics of 
kelp detritus and quantified the importance of the 
most relevant environmental drivers, such as the 
amount of organic matter enrichment, anaerobic vs. 
aerobic mineralization, and ambient temperature. 
These investigations provide important insights on 
benthic responses and factors to acknowledge during 
sustainable kelp farming of 2 commercially relevant 
species in defaunated sediment. However, natural 
settings are highly variable and macrofauna can play 
an important role for the biogeochemical function of 
benthic habitats. The study provides detailed quanti-
tative insight on the degradation dynamics, re vealing 
some surprising findings such as microbial priming, 
which may enhance the degradation of resilient or-
ganic material in the sediment counteracting climate 
beneficial burial of carbon equivalents. However, as 
for most laboratory studies, our investigations cannot 
be directly transferred to complex and environmen-
tally dynamic in situ conditions. The next step for ex-
ploring environmental effects of kelp deposition 
would be to assess benthic responses in complemen-
tary large-scale megacosms or non- invasively by the 
eddy covariance approach (Berg et al. 2022). 
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Fig. A1. Cumulative O2 consumption during parallel incubations of suspended fresh and pre-frozen kelp material from the 
(a,b) 2 targeted species and (c) during parallel controls without kelp. Error bars indicate SD of triplicate measurements
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